

1

The Apple Barrier: An Open Source Interface to the IPhone

Tom Keene
Independent Artist

tom@theanthillsocial.co.uk

This paper presents the ongoing process, challenges and approach of integrating open source
hardware with the iPhone. The aim of the project was to create software and an accompanying
device using Arduino, an open-source electronics prototyping platform based on flexible, easy-to-
use well documented hardware and software extensively used by artists [1].

The iPhone was chosen primarily because of it ubiquitous presence but also because of creative
possibilities due to computational power, networking functionality, inbuilt sensors and storage
capabilities. However, restrictions and complexities to the way we can interface with those
technologies mean many of those possibilities are lost. The ecology of open source tools available
to digital artists make highly technical environments accessible to low technology users, yet the
closed environment provided by Apple, used by the vast majority of owners, force corporate
agenda onto the ways we choose to communicate. Users are actively discouraging from
understanding how these tools work, be that through hardware interface, technical language,
levels of knowledge or literal licensing restriction. The process of building an interface to these
technologies reveals the restrictive mechanisms at play and provides insight into ways they may
be challenged or subverted.

Apple iPhone, Ubiquitous technologies, Open source, Bio-sensors, Locative media, Hacking

1. INTRODUCTION

This paper is an investigation into the corporate
control mechanisms prevalent in ubiquitous mobile
technologies. My interest in this issue arose during
my involvement in a University of Sussex research
project “Supporting Shy Users in Pervasive
Computing”. This is a cross-disciplinary EPSRC
funded project, bringing together Informatics,
Sociology, Human-Computer Interaction and Art.

Figure 1: Device attached to the iPhone

As a digital artist in this project, I developed a
hardware interface to the iPhone to measure
changes in sweat level as a means to indicate
psychological or physiological arousal. During the
build process it became apparent that corporate
control mechanisms specific to the iPhone blocked
my attempts to interface open source technologies
with this closed source device.

This paper is not an account of the use of this
interface in the shyness project. The focus is on
closed corporate control mechanisms at play within
ubiquitous mobile technologies maintaining elitist
control and access.

Using an engineering exercise as a way of
examining these issues, I illustrate and critique the
role of restrictive licensing models in a creative
process and examine future implications and
ethical considerations that arise as these
technologies evolve within a corporate landscape.
The research was initiated with the following
questions in mind:

• What creative possibilities emerge from building

a distributed sensor network?
• What ethical considerations come into play?
• What technical difficulties arise?

The Apple Barrier: An open source interface to the iPhone
Tom Keene

2

To contextualise my approach it is helpful to outline
my work as an artist. I write software code and use
engineering techniques as part of my creative tool-
set. I investigate technologies, their application,
and social impact. I often act as a technological
translator where I mediate between groups with
wildly varying levels of technological understating. I
have immersed myself in the language and
practices of software engineers, electronic
engineers and microbiologists. I take this
knowledge into my work with youth and community
groups of all ages, where my approach to
technology is a study of what we are making as a
culture, why we are making it, who has access to it
and why.

Full instructions to build the hardware device have
been provided at the end of this paper, including a
circuit diagram and descriptive text.

This paper was inspired by a period of artistic
research undertaken by artists Tom Keene, and
Anna Dumitriu. This project is part of the University
of Sussex Project “Supporting Shy Users in
Pervasive Computing” an EPSRC funded project
bringing together Informatics, Sociology, Human-
Computer Interaction and Art.

2. THE APPROACH

The project arose as the result of a discussion
between the artist Anna Dumitriu and myself. We
were interested in seeing what would arise through
the creation of a device that shared data from a
Galvanic Skin Response (GSR) sensor across
multiple users utilising their own mobile devices. A
GSR sensor measures electrical conductance of
the skin, which varies with the presence of sweat,
indicating changes in stress level. Once the device
had been built, our aim was to devise a series of
workshops, performances and discussions that
explored individual response and experience of
these networked technologies.

We decided to build a low cost device that plugged
into an iPhone using Arduino, “an open-source
electronics prototyping platform, intended for
artists, designers, hobbyists, and anyone interested
in creating interactive objects or environments” [1].
We decided to use the iPhone because of its
ubiquity, processing power, network and sensor
capabilities. We then intended to distribute data
with Pachube, a free web based service that allows
users to “Store, share & discover real-time sensor
data” [2] All of these components promised rapid,
low cost prototype development.

The essential software components were to consist
of code residing on the Arduino that would interpret

and send sensor data to the iPhone. The iPhone
application would be written with OpenFrameworks,
“an open source C++ toolkit for creative coding” [3]
that would receive data from the Arduino and
distribute it to the Pachube web service.

For each of the components cursory research
revealed there were readily available examples
online for what we wanted to achieve. So, as I was
tasked with building the device and writing
software, I felt confident taking this route even
though the iPhone was the least familiar
component of what we wanted to achieve.

What was eventually discovered was that the open
source and open standards tools provided by
OpenFrameworks, Arduino and Pachube did
rapidly enable us to achieve our goals, but the
closed environments of the Apple iPhone and App
Store thwarted and delayed almost every aspect of
the technological endeavor. And while this was
frustrating, the process clearly exposed key
themes, issues and challenges that surround
control of mobile technologies and personal data.

3. THE NARRATIVE

3.1 No hacking
It was decided that an approach would be
investigated that did not require the iPhone
operating system (iOS) to be hacked (otherwise
known as “Jailbreaking”), because the majority of
iPhone users do not use hacked phones and I
wished to use and investigate the same
technologies that they use. It is also worth
mentioning that in the UK and EU Jailbreaking an
iPhone remains a legally grey area, though it
seems highly unlikely that legal proceedings would
be undertaken for such an endeavor.

The decision to use the (not hacked) base
operating system (IOS) meant that the approach
would need to adhere to Apple's digital rights
management (DRM) structure. DRM imposes
restrictions on use of the operating system and
access to hardware functionality. This includes a
centralised approvals and distribution process for
applications, in addition to restrictions on hardware
and software interface.

If we wished to distribute our custom iPhone
application to an audience beyond 100 users, it
would need to pass an Apple implemented
censorship process, as is permitted by the apple
developer program. And while it was likely that the
application would be passed, there was always a
possibility that it would not, as has happened with
other submissions to the App Store. We would also
need to enroll on the iPhone developer program,
costing $99 per year, which legally binds

The Apple Barrier: An open source interface to the iPhone
Tom Keene

3

developers to draconian non-disclosure
agreements. Without paying this fee you are not
able to freely distribute applications to all users of
the iPhone, nor are you able to voice any complaint
should submissions to the App Store be rejected as
rejection is bound by a non-disclosure agreement.

3.2 A web based approach
Wishing to avoid the headache of non-disclosure
agreements and the App Store, an initial prototype
focused on developing a web-based approach
utilising HTM5, a broad set of new technologies
being implemented in web browsers allowing
complex and standards compliant applications to
be built within a browser interface. This approach
would avoid developer registration or distribution
via Apples App Store. Users would simply need to
visit a web page in order to receive and transmit
data. This was made possible because of a low
cost add-on to the Arduino board called the “wi-
shield” [4] a device that is able to create a wireless
connection to the iPhone. The theory was that the
iPhone would be able to simultaneously maintain
two wireless connections, one to the custom device
and another to the 3G-telephone network allowing
data to be uploaded and re-distributed via
Pachube.

Initial experiments were promising in that a wireless
connection could easily be made to the sensor and
that a purely web-based application could fulfill the
requirements of the project. Advances in HTML5
and support for associated technologies on the
iPhone meant that a web-based application could
be made to download and look like a native iPhone
application which would be a huge usability benefit
to end-users. However, after extensive testing it
became apparent that while data could be
transferred this way, the simultaneous connections
were not reliable, requiring continual re-setting of
network preferences on the iPhone. These
problems were compounded by an inability to
effectively debug what was happening due to the
locked down environment of the iPhone, where we
are prevented from installing applications that
would help diagnose the problems.

3.3 Direct connections
Back to the drawing board and it was clear that I
would have to register with the developer program
to achieve the aims of the project. Previous
research had revealed an external accessories API
(Application Protocol Interface), enabling the
iPhone to communicate with external devices. This
initially promised to be straightforward to implement
utilising a minimal set of hardware and software
components.

It quickly became apparent that to use this API you
have to sign up and get accepted to an additional
developer program titled "Made for iPhone" (MFi),

which was also protected with non-disclosure
agreements. Acceptance on the program gives
permission to purchase a proprietary authentication
chip sold exclusively by apple. This chip would
need to be embedded on any custom device. The
MFi program is clearly aimed at commercial
organisations and actively blocks open hardware
integration, meaning this author was rejected from
the application process.

3.4 An alternative approach
With avenues for experimentation closing down, it
was clear that alternative methods would need to
be sought. A number of others had also come to
the same conclusion and people had started to
publish alternative strategies for connecting
hardware to the iPhone without having to be
accepted as part of the MFI program. The solutions
centered on a similar technique called frequency
shift keying (FSK) which utilised the iPhones ability
to record and generate audio, functionally that
developers are allowed to use under the standard
iPhone developer program terms and conditions.
The FSK technique, first discovered in the early
1900s, encodes digital signals within an audio
signal.

A paper originating from the university of Michigan
[5], clearly indicated this method would work. A
book titled “iPhone Hacks”[6] provided instructions
for building hardware and software, though
unfortunately, both those resources did not
illustrate how to implement the solution using
Arduino hardware. A Japanese language website
[7] translated into English via ‘Google Translate’,
revealed instructions for building a device with
Arduino. I followed these instructions and
subsequently built the device but communication
between devices was erratic and the limit of my
understanding of electronic engineering and C++
programming techniques had been reached.

3.5 The simple solution
At a point where it looked like all possible solutions
had failed I came across a paper produced by
“lab3: The Laboratory for Experimental Computer
Science” in Cologne [8]. They outlined a simple
method to generate a very precise sine wave tone
using the Arduino. It mentioned that this tone could
be used as the basis for FSK or simply for
generating an audio tone. I also discovered
example code for detecting the frequency of an
audio tone within the OpenFrameworks coding
environment, which could be used as a basis of the
iPhone application. From these examples I was
able to build a prototype hardware interface and
associated iPhone application that read a sensor
value as mapped to a simple rising or falling tone.
High resistance in the skin generates a high
frequency tone and lower resistance a low

The Apple Barrier: An open source interface to the iPhone
Tom Keene

4

frequency tone. This technique did not need to use
the more complex FSK approach, though the
hardware would facilitate this more powerful
approach as my skill level increases or further
solutions became apparent.

4. THE BARRIERS
My attempt to interface with an object and culture
was barred on grounds of experience, money,
access to knowledge, influence and technological
understanding. However, most importantly, my
freedom to cooperate, share and learn from others
was also being barred. The technologies
themselves were not the main barrier, but rather
the licensing structures, distribution mechanisms
and non-disclosure agreements that served to
control my interaction with these technologies and
other users. Had I attempted to connect to a laptop
rather than an iPhone, construction of a sensor
device would have been a much easier task. It was
not possible to connect the iPhone because Apple
blocks this in order to maintain a monopoly. This
authoritarian control is concealed by Apple’s
rhetoric, that keeping these technologies ‘locked
down’ facilitates consistency of design and
maintains high technological standards. What it
actually seeks to maintain is an effective marketing
system.

4.1 Creative barriers
The creative tools of media technologies have
expanded to include any combination of
electronics, engineering, software, APIs, data and
telephone networks. The promise of Apples
marketing strategy is that their technological tools
inspire creativity, yet new forms of creativity are
stifled. Legal language is used to discourage
experimentation and hardware features are made
redundant to protect consumer markets. A strong
message is received that creative endeavors need
to be of a particular standard as judged by a
corporate organisation. If we do not live up to this
standard or sets of rules, then anything created
outside of the given structure is deemed wrong,
with possible legal implications.

This project could have been implemented using
alternative technologies, but rather than take the
easy option, I saw an opportunity to analyze and
experience the control structures inherent within a
mainstream technology. This analysis has revealed
potential ways of subverting these control
mechanisms, enabling alternative networks and
data routes. No better example of the importance of
this is with the recent uprisings in Egypt, where
citizen net access dropped almost to zero. In
response, alternative means of communication
were made available via international dial-up
telephone numbers and offers to forward voice and

Morse code messages sent via ham radio.

4.2 Dystopian futures
Mobile networks now cover a huge proportion of
the planet allowing connectivity from almost any
location on the globe. Changes in internet
protocols, specifically IPv6 have increased the
maximum number of devices able to
simultaneously connect via the internet, paving the
way for huge numbers of sensors and mobile
technologies to share data. Understanding the
implications of this explosion of connectivity is
paramount. It is not hard to imagine what could
happen when biological data and devices (heart
rate monitors, breathing, electrocardiograph,
pacemakers) mediated by mobile devices are
accessed for economic gain. The reputation of
private medical industry diminishes confidence to in
trusting companies with our biological data and
devices that physically connect to our bodies. Yet
the private medical industry is precisely the market
that Apple has identified for the development of
external hardware for the iPhone. A comparable
trajectory can be seen with the evolution of energy
sensors in the home. For example The Electronic
Frontier Foundation has highlighted potential
surveillance and civil rights issues in response to
companies having access to something as
seemingly benign as energy usage in the home:

Without strong protections, energy data can and
will be used in ways that will hurt consumers.
Marketing companies will desperately want to
access this data to get intimate new insights into
your family's day-to-day routine, and it's not hard
to imagine an insurance company interpreting
the data in a way that allows it to penalise you.
Our privacy rights should be strongest in our
home. [9]

These problems of civil rights exponentially
increase as networked sensors move from the
home into new territory: the body. If a wide
proportion of society is blocked from accessing or
engaging with these technologies then this is cause
for concern, as elite groups then have ultimate
control of how we communicate at the most
intimate level.

5. CONCLUSION

We exist in a new age of mobile technologies.
Small powerful computers able to produce all forms
of digital media and instantly distribute data across
network, both with or without our knowledge. The
doors are open for private medical industry and
larger corporate organisations with access to huge
resources to develop interfaces to these
technologies. It is extremely difficult for smaller
independent organisations and individuals to
produce experimental hardware that interfaces with

The Apple Barrier: An open source interface to the iPhone
Tom Keene

5

the mass consumer version of these devices. It is
vital to investigate and experiment with these
technologies precisely because they are so
personal. They live in our pockets and are next to
our skin. They are capable of sharing the most
intimate of information, from whispered voices, to a
sensor attached to our bodies revealing a heartbeat
or changes in our stress levels. There is an
imperative to open up means of experimentation
with the underlying technologies and structures that
facilitate these new forms of communication.

That privilege should not be handed solely to the
engineers of corporations or even technological
‘geek’ elites.

Engineers tend to design platforms for other
engineers, not for artists, weirdos, or kids who
want to connect stuff up in a simple way to share
an idea. [10]

Therefore, access to technology goes beyond
merely the ability to afford a device. Access is
about providing literal hardware interface and sets
of tools and solutions that people at all levels can
experiment with and understand.

6. THE CONSTRUCTION

The following instructions have been amalgamated
from examples that have been posted across many
websites online. The construction, outlined in
Figure 2 consists of four elements:

a. The iPhone.
b. The Arduino microprocessor.
c. A filter circuit.
d. A galvanic skin response (GSR) sensor.

The sensor connects to an Arduino board that
generates an audio tone that is mapped to value of
electrical resistance in the skin. A filter removes a
32KHz sampling frequency contained within the
output signal, which is sent to the microphone input
of the iPhone, which then processes the signal.

6.1 Tone generation & filter
The filter is a design outlined by lab3, at The
Academy of Media Arts Cologne. Paraphrased
from their website:

We describe how to generate sine waves with
an Arduino board in a very accurate way using
commonly available components. The frequency
range reaches form zero to 16 KHz Useful for
music and sound generation another range of
application is in telecommunication where the
DDS Method can be used for instance in
frequency or phase modulation (FSK PSK). [8]

Filter parts list

2X 47nF 100V 5mm Capacitors
1X 100nF 63Vdc Capacitor
2X ELC coil inductor 4.7mH 0.12A
2X 270Ω resistors
1X 100K resistor
1X 100K Trim Pot

Figure 2: Circuit diagram

Table 1: iPhone headphone connections

Figure 1: Prototype device

The Apple Barrier: An open source interface to the iPhone
Tom Keene

6

Pin Name Description
1 Tip Left audio
2 Ring Right audio
3 Ring Common/Ground
4 Sleeve Microphone

6.1 Galvanic Skin Response Sensor
A simple proven design, though the contact points,
tend to corrode if used over long periods of time so
need to be refreshed with a quick rub of sandpaper.
To create the skin contacts, I simply sanded the
pennies then soldered wires to them, sticking them
to the skin with medical tape.

I have seen many examples of this kind of GSR
sensor, which have recommended any resistor
value between 2k and 300k. My experiments
performed best with a 10k resistor. I used copper
pennies as the skin contacts, as these performed
better than other solutions that had been suggested
such as foil tape.

Parts list for GSR sensor
2 X 1 pence pieces
Sand paper to refresh contacts.
Plasters to fasten sensors to skin.
1 X 2k-300k resistor.
0.1uf Capacitor.

Figure 3: holding the device

6. REFERENCES

[1] www.arduino.cc (2.3.2011)
[2] www.pachube.com (2.3.2011)
[3] www.openframeworks.cc (2.1.2011)
[4] www.asynclabs.com (2.2.2011)
[5] Ye-Sheng Kuo, Thomas Schmid, and Prabal
 Dutta. (2.9.2010). Hijacking Power and
 Bandwidth from the Mobile Phone’s Audio
 Interface.
[6] David Jurick, Adam Stolarz, Damien Stolarz.
 (4.9.2009) iPhone Hacks.
 O'Reilly Media / Make. United States.
[7] Play with Arduino - iPhone audio

 jack for use through.
http://arms22.blog91.fc2.com/blog-
entry-350.html (1.4.2011)

[8] Nawrath, Martin. Arduino DDS Sinewave
Generator.
http://interface.khm.de/index.php/lab/experime
nts/arduino-dds-sinewave-generator/ (2011)

[9] Jeschke, Rebecca. (2010) EFF Advises
California PUC on Smart Grid Privacy
Protections.
http://www.eff.org/deeplinks/2010/10/eff-
advises-california-puc-smart-grid-privacy
(1.4.2011)

[10] Torrone, Phillip. (2011) Why The Arduino Won
And Why It’s Here To Stay.
http://blog.makezine.com/archive/2011/02/why
-the-arduino-won-and-why-its-here-to-stay.html
(1.4.2011)

